

MODEL NO :		TMTZTJD	<u>GP30</u>				
MODEL VERSI	ON:	00					
SPEC VERSIO	N :	V2.0					
ISSUED DATE:		2021-03-	23				
☐ Preliminary Specification ■ Final Product Specification Customer:							
Approved by		Notes					
TIANMA Confirmed :							
Prepared by	Check	red by	Approved by				
Gang.Li	Longping.Deng		Jinquan.Liu				

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

This technical specification is subjected to change without prior notice.

Table of Contents

Tab	ble of Contents	2
	cord of Revision	
	General Specifications	
	Input/Output Terminals	
	Absolute Maximum Ratings	
	Electrical Characteristics	
	Timing Chart	
	Optical Characteristics	
7	Environmental / Reliability Test	20
	Mechanical Drawing	
	Packing Drawing	
	Precautions For Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2019-01-25	Preliminary Specification Released.	Gang.Li
1.1	2019-10-23	Update more details.	Gang.Li
1.2	2020-03-10	Update mechanical drawing(modify screw hole of short side) on page18.	Gang.Li
1.3	2020-04-01	Modify display direction on page5. Update timing on page10.	Gang.Li
1.4	2020-08-06	Update vibration test condition on page17.	Gang.Li
2.0	2021-03-23	Final Version Released.	Gang.Li

1 General Specifications

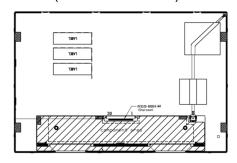
	Feature	Spec	
	Size	12.1 inch	
	Resolution	1280(RGB) x 800	
	Technology Type	SFT	
Diapley Spee	Pixel Configuration	R.G.B. Vertical Stripe	
Display Spec.	Pixel Pitch (mm)	0.204x0.204	
	Display Mode	Transmissive, Normally Black	
	Surface Treatment(Up Polarizer)	AG	
	Viewing Direction	All direction	
	LCM (W x H x D) (mm)	278.0x184.0x9.9	
	Active Area(mm)	261.1x163.2	
Mechanical	With /Without TSP	Without Touch Screen	
Characteristics	Matching Connection Type	JAE:FI-X30CL	
	Weight (g)	445	
Electrical	Interface	1port LVDS, 6/8bit selectable	
Characteristics	Color Depth	16.7M/262k	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals


2.1 TFT LCD Panel

Connector type: MSAKT2407P30HB(STM) Matching Connector: JAE FI-X30CL or compatible

No	Symbol	I/O	Description	Comment
1	VLED	Р	Backlight power supply +12V	
2	VLED	Р	Backlight power supply +12V	
3	VLED	Р	Backlight power supply +12V	
4	VLED	Р	Backlight power supply +12V	
5	VLED_EN	I	Backlight on/off control (1: ON, 0:OFF)	
6	VLED_PWM	I	Backlight dimming control	
7	GND	Р	Power ground	
8	GND	Р	Power ground	
9	VDD	Р	Power Supply +3.3V	
10	VDD	Р	Power Supply +3.3V	
11	GND	Р	Power ground	
12	GND	Р	Power ground	
13	Rxin0-		-LVDS differential data input(R0~R5,G0)	
14	Rxin0+	I	+LVDS differential data input(R0~R5,G0)	
15	GND	Р	Power ground	
16	Rxin1-	ı	-LVDS differential data input(G1~G5,B0~B1)	
17	Rxin1+	ı	+LVDS differential data input(G1~G5,B0~B1)	
18	GND	Р	Power ground	
19	Rxin2-	ı	-LVDS differential data input(B2~B5,HS,VS,DE)	
20	Rxin2+	I	+LVDS differential data input(B2~B5,HS,VS,DE)	
21	GND	Р	Power ground	
22	RxCLK-		-LVDS differential data input	
23	RxCLK+	I	+LVDS differential data input	
24	GND	Р	Power ground	
25	Rxin3-	I	-LVDS differential data input(R6~R7,G6~G7,B6~B7)	
26	Rxin3+	I	+LVDS differential data input(R6~R7,G6~G7,B6~B7)	
27	GND	Р	Power ground	
20	CEL 6/0		Low>6 bit input mode	
28	SEL6/8	I	High or NC>8 bit input mode	
29	GND	Р	Power ground	
30	GND	Р	Power ground	

Note1: I/O definition: I----Input P----Power/Ground

Note2: Display direction (PCB at down side)

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

GND=0V

Item	Symbol	MIN	MAX	Unit	Remark
Voltage Input	VDD	-0.50	4.00	V	Otros de Dation
LED power	VLED	-0.50	33V	V	Stress Rating.
LED control	VLED_EN、 VLED_PWM	-0.50	5.5V	V	
Operating Temperature	Тор	-20.0	70.0	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tst	-30.0	80.0	$^{\circ}\!\mathbb{C}$	
			≤95	%	Ta≪40°C
	RH		≤85	%	40℃ <ta≤50℃< td=""></ta≤50℃<>
Relative Humidity (Note1)			≤55	%	50°C <ta≤60°c< td=""></ta≤60°c<>
(Note 1)			≤36	%	60℃ <ta≤70℃< td=""></ta≤70℃<>
			≤24	%	70℃ <ta≤80℃< td=""></ta≤80℃<>
Absolute Humidity	AH		≤70	g/m³	Ta>70℃

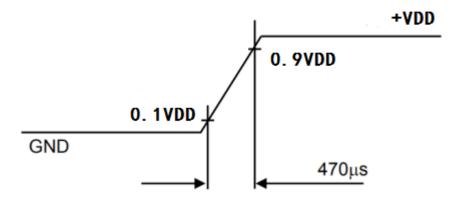
Table 3.1 absolute maximum rating

Note1: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4 Electrical Characteristics

4.1 Driving TFT LCD Panel


VCC=3.3V,GND=0V, Ta=25°C

Item	1	Symbol	MIN	TYP	MAX	Unit	Remark
Power supply \	/oltage	VDD	3.00	3.30	3.60	V	Include ripple
Power supply r	ipple	Vp-p	-	-	100	mV	
Power supply of	current	IDD	-	200	-	mA	
Power consum	ption	Р	-	660	-	mW	Note1
Differential inpu	ut voltage	Vid	200	-	600	mV	
Differential inpu voltage	ut common	Vсм	1	1.2	1.4	V	
Differential input threshold	Low level	VTL	-100	-	-	mV	
voltage	High level	VTH	-	-	100	mV	
Inrush current		Irush	-	-	1.5	Α	Note2

Table 4.1 LCD module electrical characteristics

Note1: To test the current dissipation, using the "white pattern" shown.

VDD rising time is 470μs

Note2: Inrush current definition.

4.2 LVDS DC electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential input high threshold voltage	Rхvтн	-	-	+0.1	V	- Rxvcm=1.2V
Differential input low threshold voltage	RxvTL	-0.1	-	-	V	RXVCM-1.2V
Input voltage range (singled-end)	Rxvin	0.7	-	1.7	V	
Differential input common mode voltage	Rxvсм	1	1.2	1.4	V	V _{ID} =0.2
Differential input impedance	Zıb	80	100	125	ohm.	
Differential input voltage	Vib	0.2	-	0.6	V	
Differential input leakage current	ILCLVDS	-10	-	+10	·uΑ	
LVDS Digital Operating Current	IVDD	-	15	20	mA	FDCLK=80MHz,VDD=3.3V, Input pattern: 55h->Aah->55h->Aah
LVDS Digital Stand-by Current	lsт	-		250	uA	Clock & all Functions are stopped

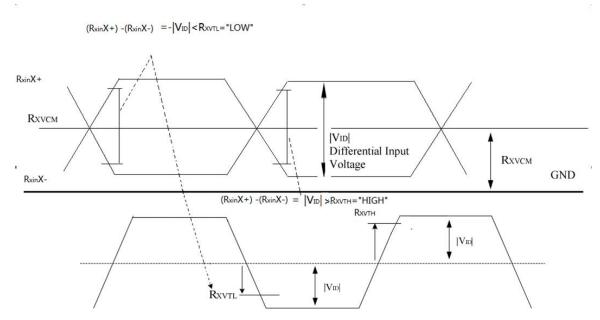


Figure 4.2.1 LVDS DC characteristics

Module No.TM121JDGP30

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	F _{LVCYC}	68	73	78	MHz
Clock period	T _{LVCYC}			-	ps
1 data bit time	UI	-	1/7	-	T _{LVCYC}
Clock high time	T _{LVCH}	3.9	4	4.1	UI
Clock low time	T _{LVCL}	2.9	3	3.1	UI
Position 1	T _{POS1}	-0.2	0	0.2	UI
Position 0	T _{POS0}	0.8	1	1.2	UI
Position 6	T _{POS6}	1.8	2	2.2	UI
Position 5	T _{POS5}	2.8	3	3.2	UI
Position 4	T _{POS4}	3.8	4	4.2	UI
Position 3	T _{POS3}	4.8	5	5.2	UI
Position 2	T _{POS2}	5.8	6	6.2	UI
Input eye width	T _{EYEW}	0.6	-	-	UI
Input eye border	T _{EX}	-	-	0.2	UI
LVDS wake up time	T _{ENLVD\$}		-	150	us

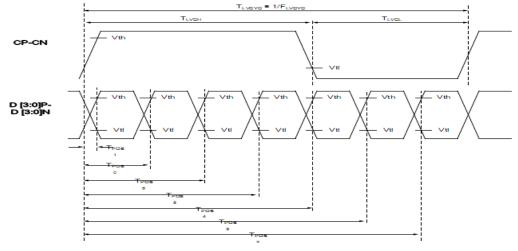


Figure 4.2.2 LVDS signal characteristics

4.3 LVDS AC electrical characteristics

Parameter	Cumbal		Spec.		Unit	Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency	RxFCLK	30	-	TBD	MHz	Refer to input timing table for each display resolution
Input data skew margin	Trskm	500	-	-	ps	VID = 200mV RxVCM = 1.2V RxFCLK = 81MHz
Clock high time	Тьусн	-	4/(7* RxFCLK)	-	ns	
Clock low time	TLVCL	-	3/(7* RxFCLK)	-	ns	
PLL wake-up time	TenPLL	-	-	150	us	

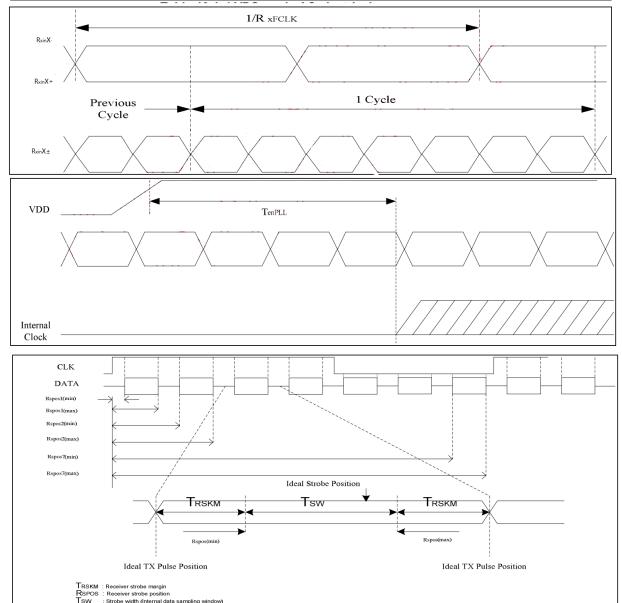


Figure 4.3 LVDS AC electrical characteristics

Note: The min value of clock frequency(30MHZ) is based on IC SPEC, user should set on suggested value(refer to page13).

4.4 Driving Backlight

Ta=25°C

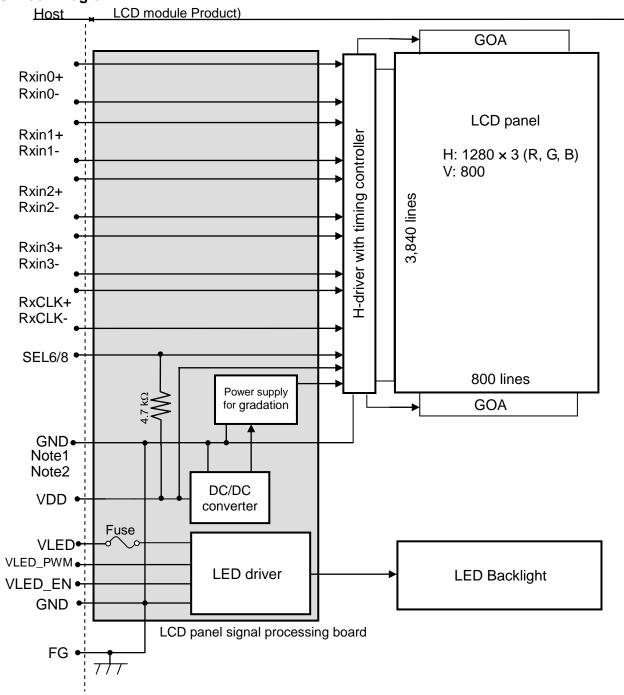

Ite	Item		Min	Тур	Max	Unit	Remark
Backlight power	supply voltage	VLED	11	12	13	>	
Backlight power	supply current	I_LED	ı	787	ı	mA	
Backlight power	consumption	P_LED	-	9444	-	mW	
Input voltage for	High level	-	1.2	-	5.0	V	
VLED_PWM signal	Low level	-	0	-	0.35	V	
Input voltage for	High level	-	1.5	-	5.0	٧	
VLED_EN	Low level	-	0	-	0.8	V	
VLED_PWM free	quency	Fpwm	200	-	10K	HZ	
VLED_PWM duty		D	3	-	100	%	Note1
Operating Life Time			50000	-		hrs	Note2
Inrush current		lr	-	-	1.5	А	Rising time:470us

Table 4.4 Backlight driving condition

- Note 1: According to LED driver IC characteristics, the minimum value of VELD_PWM duty may vary with VLED PWM frequency, higher the frequency, bigger the duty.
- Note 2: Optical performance should be evaluated at Ta=25°C only.
- Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.
- Note 4: Operating life means brightness goes down to 50% of initial brightness. Typical operating life time is estimated data.

4.5 Block Diagram

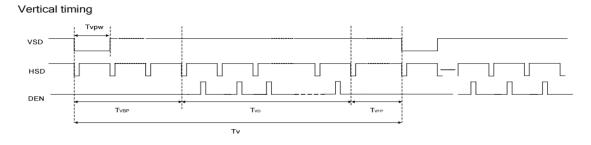
Note1: Relations between GND (Signal ground and LED driver ground) and FG (Frame ground) in the LCD module are as follows:

GND - FG	Connected
----------	-----------

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

5 Timing Chart

5.1 LVDS signal timing characteristics


VCC=3.3V, GND=0V, Ta=25°C

Parameter	Symbol	Value			Unit	Note
Parameter	Symbol	min	typ	max	Ullit	Note
CLK frequency	t clk	68	73	78	Mhz	
Horizontal blanking time	tнвт	102	162	222	t clk	thbp + thfp + thpw
Horizontal back porch	thbp		88		t clk	
Horizontal display area	thd	1280			t clk	
Horizontal front porch	tHFP	-	72	-	t clk	
Horizontal period	tн	1382	1442	-	t clk	
Horizontal pulse width	thpw	ı	2	-	t clk	
Vertical blanking time	t vвт	26	40	74	tн	tvbp + tvfp + tvpw
Vertical back porch	t vbp	23		tн		
Vertical display area	tvd	800			tн	
Vertical front porch	t VFP	-	15	-	tн	
Vertical period	t∨	826	840	874	tн	
Vertical pulse width	t∨pw		2	·	tн	

Table 5.1 timing parameter

Note: Blanking setting must be even numbers.

5.2 Input Clock and Data timing Diagram:

Horizontal timing

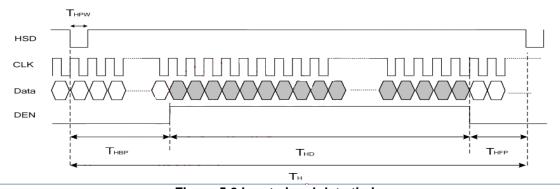


Figure 5.2 Input signal data timing

5.3 LVDS data input format

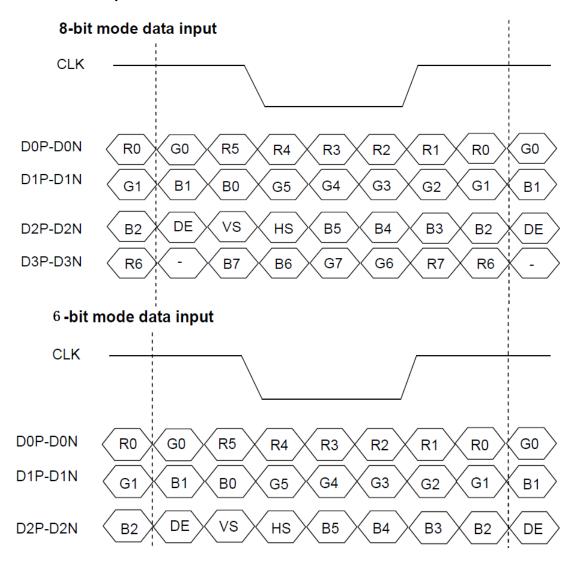


Figure 5.3 LVDS data input format (VESA standard)

Note: This LCD module supports HV mode only, so HSYNC&VSYNC signal is necessary.

5.4 Power On/Off Sequence

Item	Symbol	Min	Тур	Max	Unit	Remark
VDD on to VDD stable	Tp1	0.5	-	ı	ms	
VDD stable to signal on	Tp2	50	-	-	ms	
Signal on to VLED_EN on	Tp3	200	-	-	ms	
PWM on to VLED_EN on	Tp4	0	-	-	ms	
VLED to PWM on	Tp5	10	-	-	ms	
VLED on to VELD stable	Tp6	0.5	-	10	ms	
VDD off time	Tp7	-	-	10	ms	
VDD off to next VDD on	Tp8	500	-	-	ms	
Signal off before VDD off	Tp9	0	-	50	ms	
VLED_EN off before signal off	Tp10	200	-	-	ms	
VLED_EN off before PWM off	Tp11	0	-	-	ms	
PWM off before VLED off	Tp12	10	-	-	ms	

Table 5.4 Power on/off sequence

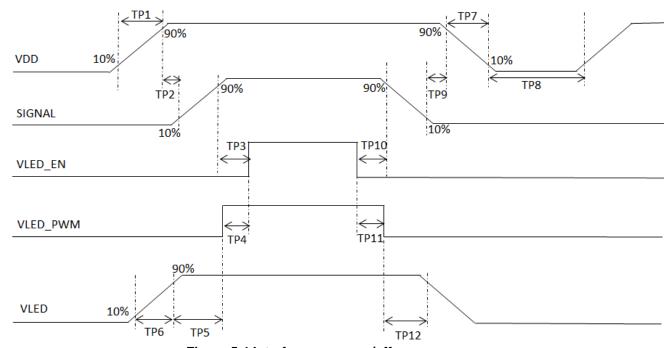


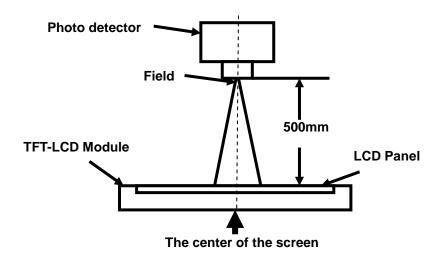
Figure 5.4 Interface power on/off sequence

Note: It is advised that backlight turned on later than display stabled.

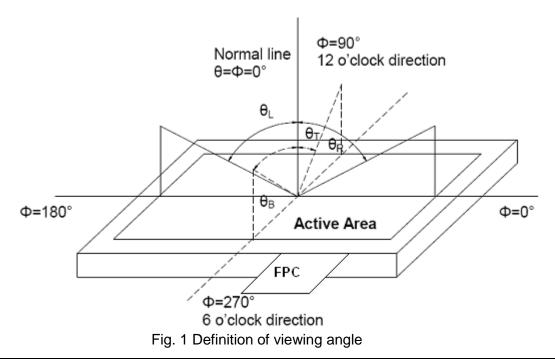
6 Optical Characteristics

Ta=25°C

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angles		θТ		75	85	-	Degree	Note 2
		θВ	CR≧10	75	85	-		
		θL	CR≦ IU	75	85	-		
		θR		75	85	-		
Contrast Ratio		CR	θ=0°	800	1000	-	-	Note1 Note3
Response Tim	ne	T _{ON+} T _{OFF}	25 ℃	-	25	40	ms	Note1 Note4
	White	х	Backlight is on	0.250	0.30	0.350	-	Note5 Note1
		У		0.270	0.320	0.370		
	Red	х		0.593	0.643	0.693		
Chromaticity		у		0.286	0.336	0.386		
Chilomaticity	Green	Х		0.253	0.303	0.353		
		у		0.571	0.621	0.671		
	Blue	Х		0.096	0.146	0.196		
		у		0.032	0.082	0.132		
Uniformity		U	-	70	75	-	%	Note1 Note6
NTSC		-	-	67	72	-	%	Note 5
Luminance		L	-	360	450	-	cd/m ²	Note1 Note7


Test Conditions:

- 1. The ambient temperature is 25±2℃.humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.



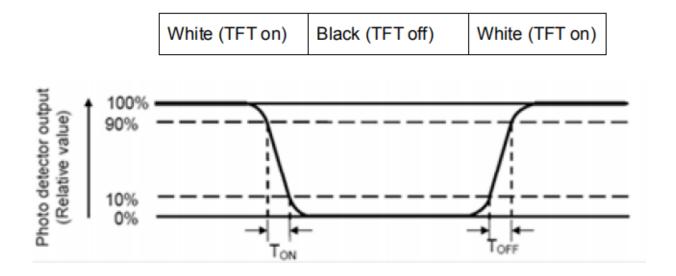
Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}}$


"White state ":The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

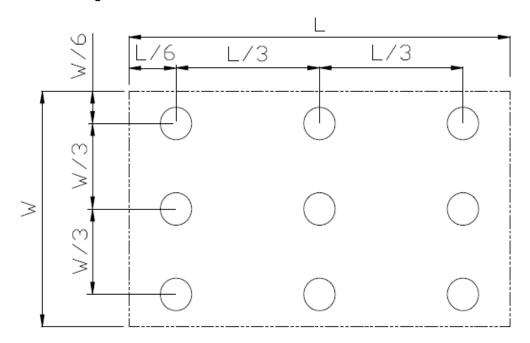
Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.



Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L-----Active area length W----- Active area width

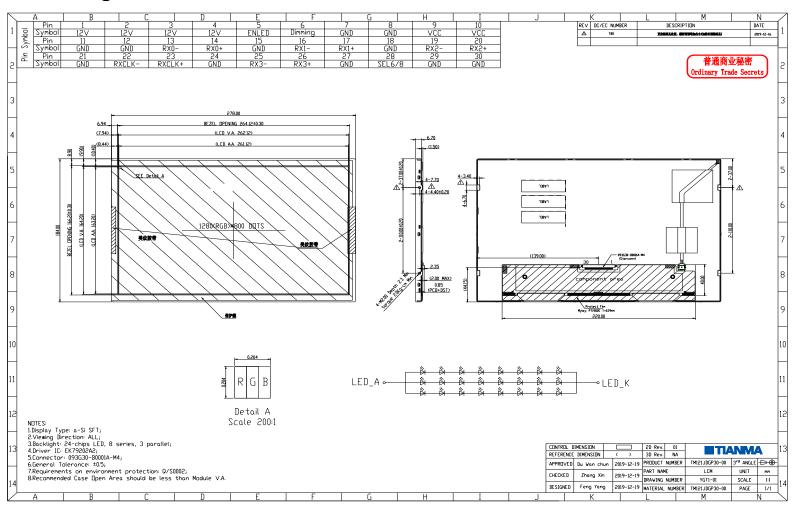
Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

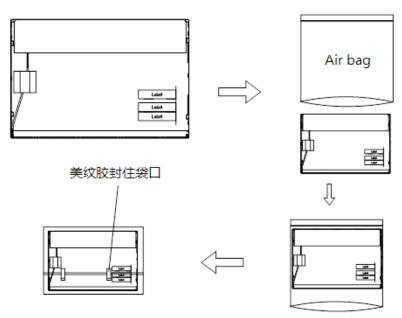
7 Environmental / Reliability Test


No	Test Item	Condition	Remark
1	High Temperature	Ta=+70℃, 240hrs	(Note1)
	Operation		IEC60068-2-1:2007,GB2423.2-2008
2	Low Temperature	Ta=-20℃, 240hrs	IEC60068-2-1:2007
	Operation		GB2423.1-2008
	High Temperature	Ta=+80℃, 240hrs	IEC60068-2-1:2007
3	Storage		GB2423.2-2008
	(non-operation)		
	Low Temperature	Ta=-30℃, 240hrs	IEC60068-2-1:2007
4	Storage		GB2423.1-2008
	(non-operation)	T 00% 000/ DI	(0.1 + 0.)
_	High Temperature &	Ta = +60°C, 90% RH max,240	,
5	High Humidity	hours	IEC60068-2-78 :2001
	Operation	00% 00 : 00% 00 :	GB/T2423.3—2006
_	Thermal Shock		Start with cold temperature,
6	(non-operation)	Change time:5min,100cycles	End with high temperature,
		C-150°C D-3300	IEC60068-2-14:1984,GB2423.22-2002 IEC61000-4-2:2001
7	Electro Static	C=150pF,R=330Ω; Contact:±4Kv, 5times;	GB/T17626.2-2006
′	Discharge	Air: ±8KV,5times;	GB/117020.2-2000
	(operation)	, ,	(Noto 2)
8	Vibration	5~100HZ,19.60m/s2,1min/cycle	(Note2) IEC60068-2-6:1982
0	(non-operation)	120times Per X\Y\Z	GB/T2423.10—1995
		60G 6ms, ±X,±Y,±Z 3 times	
9	Shock	for each direction	IEC60068-2-27:1987
9	(non-operation)	lor each direction	GB/T2423.5—1995
		Height:80 cm,1 corner, 3	GB/T4857.5—1992
10	Package Drop Test	edges, 6 surfaces	05/19007.0 1002
		Frequency: 5-20-200HZ	
	Package Vibration	PSD: 0.01-0.01-0.001	GB/T4857.23-2012
11		Total: 0.781g2/HZ,	GD/14007.23-2012
		(x/y/z each direction 30min)	

Note1: Ta is the ambient temperature of sample.

Note2: When vibration/shock test, LCD module is laid down and fixed to the test equipment.

8 Mechanical Drawing

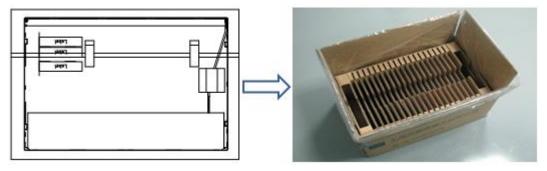


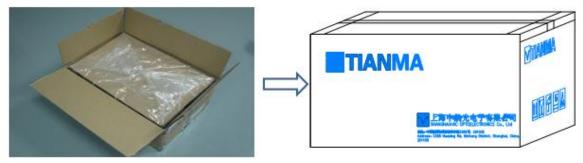
9 Packing Drawing

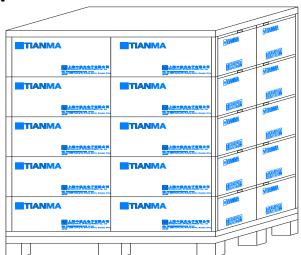
No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM121JDGP30- 00	278.0x184.0x9.9	0.445	15	
2	Carton	CORRUGATED PAPER	530×430×274	1.06	1	
3	Dust-proof Bag	PE	700×530×0.08	0.06	1	
4	Label	Label	100×52	0.000345	1	
5	EPE	EPE	395.0×249.0×5.0	0.0115	1	
6	Corrugated Bar	Corrugated paper	379.0×300.0	0.1	1	
7	Partition_1	CORRUGATED PAPER	513.0×295.0×240	1.77	1	
8	Partition_2	CORRUGATED PAPER	513.0×413.0×7	0.142	1	
9	Anti-static Bag	PE	300.0×250	0.0106	15	
10	Total weight(Kg)	9.97Kg±5%				

The packing method is shown as below:

1. Module in air bag.




2. Dummy packing.


3. Module in carton.

4. Seal.

5. Carton on pallet

Note: 2x2x5

10 Precautions For Use of LCD Modules

a) Handling Precautions

- i. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- ii. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- iii. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- iv. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- v. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water ,Ketone ,Aromatic solvents
- vi. Do not attempt to disassemble the LCD Module.
- vii. If the logic circuit power is off, do not apply the input signals.
- viii. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 1. Be sure to ground the body when handling the LCD Modules.
 - 2. Tools required for assembly, such as soldering irons, must be properly ground.
 - 3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - 4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

b) Storage Precautions

- When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- ii. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

iii. The LCD modules should be stored in the room without acid, alkali and harmful gas.

c) Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.